Convolutional Neural Network for Stereotypical Motor Movement Detection in Autism
نویسندگان
چکیده
Autism Spectrum Disorders (ASDs) are associated with specific atypical postural or motor behaviors, of which Stereotypical Motor Movements (SMMs) may severely interfere with learning and social interactions. Wireless inertial sensing technology offers a valid infrastructure for automatic and real-time SMM detection, which would provide support for tuned intervention and possibly early alert on the onset of meltdown events. However, the identification and the quantification of SMM patterns remains complex due to strong inter-subject and intra-subject variability, hard to deal with by handcrafted features. Here we propose to employ the deep learning paradigm in order to learn discriminative features directly from multi-sensor accelerometer signals. Our results with convolutional neural networks provide preliminary evidence that feature learning and transfer learning embedded in deep architectures may lead to accurate and robust SMM detectors in longitudinal scenarios.
منابع مشابه
Deep Learning for Automatic Stereotypical Motor Movement Detection using Wearable Sensors in Autism Spectrum Disorders
Autism Spectrum Disorders are associated with atypical movements, of which stereotypical motor movements (SMMs) interfere with learning and social interaction. The automatic SMM detection using inertial measurement units (IMU) remains complex due to the strong intra and inter-subject variability, especially when handcrafted features are extracted from the signal. We propose a new application of...
متن کاملStereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network
Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.01865 شماره
صفحات -
تاریخ انتشار 2015